A new genus and species of hermit crabs (Decapoda, Anomura, Paguridae) from the western Pacific

Michèle de SAINT LAURENT
Laboratoire de Zoologie (Arthropodes), Muséum national d'Histoire naturelle, 61 rue de Buffon, F-75231 Paris cedex 05 (France) michelea@mnhn.fr

Patsy A. McLAUGHLIN
Shannon Point Marine Center, 1900 Shannon Point Road,
Anacortes WA 98221-9081B (U.S.A.)
patsy@henson.cc.wwu.edu

Saint Laurent de M. \& McLaughlin P. A. 1999. - A new genus and species of hermit crabs (Decapoda, Anomura, Paguridae) from the western Pacific. Zoosystema 21 (1): 77-92.

Crustacea,
Decapoda,
Anomura,
Paguridae,
new genus, new species, western Pacific.

Abstract

A new genus is proposed for a new species widely distributed in the western Pacific Ocean from the Philippine Islands in the northwestern Pacific south to Kermadec Islands of New Zealand. Jacquesian n.g., bears considerable similarity to Iridopaguvus de Saint Iaurent-Dechancé, 1966, in lacking an accessory tooth on the crista demtata of the third maxilliped, but having eleven pairs of quadriserial gills, slender elongate and subequal chelipeds, and a well-developed left male sexual tube. It is distinguished from Iridopaguras by the presence of paired first pleopods in females. The new species is a very distinct, but morphologically variable species. These variations, however, do not appear to be correlated with either size or sex.

MOTS CLES

Crustacea, Decaproda. Anomura. Paguridac, genre notiveau, espèce neuvelle, Pacifique occidental.

RÉSUMÉ

Un nowrentr geure de Maguridae (Crustacea, Decapoda: Anomura) pour une nouvelle espice du liaifigue ocredental.
Un nouveau genre de la lamille des Paguridae est établi pour une espèce nouvelle, trés largement répanduc dans le Pacifique occidental, depuis Jarchipel des Philippines au mord jusqu"s celni des Kermadec (Nouvelle-Zétande) au sud. Ce nouvean taxon apparrient au sroupe des Paghridac an onze paires de branchies quadrisériées, done lischion des roisièmes mavillipedes est dépourva de den accessoire al la crista dentata er done les mâles possédent un tube sexucl bien développé à gauche. Bion yu’il se distingue immédiacement des autres zenres du méne groupe par la possission de pléupodes pairs sur le premier segment abouminal des fenelles, il présente de nombreuses similicudes avee le genre vnest-atlanrique fridopogurus de Saint Laurent-Debhancé, 1966. Bien caractérisée, l'espéce nouvelle est cependant morphulogiquement wes variable. Ies vatations observés concernent particulierement la dimension e̊r la forme du tube sexuel mále, la forme er l'ornementation des mains des chélipèdes. Apparemment indépendantes de la taille ou du sexe des spécimens, elles paraissent plutôt en relation avec leur origine géographị̧ue et/ou leur habitat.

INTRODUCTION

Specimens representing this new genus and species were first observed by the senior author among the collections of the Musorstom Philippincs II Expedition of 1980. Numerous specimens were subsequently found by the second author in the collections of the Musorstom cruises to the environs of New Caledonia and Vanuanu, 1984-1995. Alrhough ir was the authors' initial intent to include this monotypic now genus in a full report of Musorstom tas:a, theit discovery of is occurrence in the Kermadee Islands of New Zealand, and need to include it in the fortheoming New Zealand faunal monograph, has made its more immediate publication necessary: "The new genus is diagnosed, and its relationship to other pagurid genera discussed. "The new species is described in detail. Pertinent aspects of its morphology are illustrated, including cheliped variation.

MATERIALS AND METHODS

Materials for this study have come primarily from MUSORSTOM (acronym for the joint
expeditions by the Musćum national d'Histoire maturelle. Paris, and the Office do la Rechorche Scientifique er Technique Outro-Mer) cruises, with the Kermadec Islands specimens provided by the National Museum of New Zealand (NMNZ) [now Muscum of New Zealand Te Papa Congarewa (MoNZ)] and the New Kcaland Occanographic lnstiture (NZOI) (now part of the National Instirute of Water and Atmospheric Research (NIWA)|. One measuremenc, shield length (sl), measured from the midpoint of the rostral lobe to the midpoine of the postction margin of the shield provides an indication of animal sizc. Jerminology follows that of McLaughlin \& de Saint Laurent (1998).
Not all specimens exannined are sypes. The holotype and selected paratypes and most non-cype specimens have been deposited in the Muséum national d'Histoire narurelle, Paris (MNHIN), or returncd to their institutions of origin. Additional paratypes have been deposited in the New Zcaland Oceanographic lnstitute, the Natural Muscum of Natural History. Smithonian Institution, Washingeon, D.C. (USNM), and The Natural History Museum, London (NHM). MUSORSTOM station data have been taken primarily from the published
cruise records (Forest 1985; Richer de Forges 1990, 1993; Richer de Forges \& Chevillon 1996; Richer de Forges et al. 1996).

The following abbreviations identify campaign, sample type or gear:
BS botrom sample
CP beam trawl:
DC Chatcot dredge;
DW Waren dredge;
SMIB Substances Marines d'Intérêt Biologique.

SYSTEMATICS

Jacquesia n.g.
Type specifs. - Jacquesia polymorpha n.sp., by present designation and monotypy.

Etrmology. - Named for Professor Jacques Forest, in recognition of his many contributions to crustacean morphology and systematics in general and to pagurids in particular. Gender feminine.

Diagnosis

Eleven pairs of quadriserial gills. Ressrum rounded, usually produced only slightly beyond hases of ocular acieles. Lateral projections prominent. Ocular peduacles moderately slender basally, expanded distally; cornae somewhat dilated. Ocular acieles natrowly triangular, rerminating acutely, with strong submarginal spine. Antennular peduncles usually with elongare ultimate segment fringad with long setae near dorsodistal margin and longitudinal sow of long setac dorsolaterally. Endopod of maxillule with very prominent, non-recurved external lobe. Third maxilliped with well-developed crista dentata, without accessory tooth; merus with very long slender spine on dorsodistal margen.
Chelipeds subequal in length, right stronger, but not always longer.
Ambularory legs with elongate, slender dactyls; carpi (ar least second) with row of spines on dorsal margin but not at dorsodistal angle. Fourth pereopods sulbchelate or very weakly semichelate, with single row of scales in propodal rasp. Fifth pereopods subchelate.
Males with club-like, stout, very short to mode-
rately long lcft sexual tube, provided with terminal ufts of very long setae and additional longitudinal row of long setae basally; coxa of right fifth pereopod with small anteromesially-placed gonopore: three unegually biramous lefi pleopods. Females with paired gonopores: coxae of fifth pereopods with fringe of moderate to dense long setae; paired first pleopools, unpaired left pleopods 2-5.
Uropods markedly asymmerrical. Telson with weak transverse indemtation suggesaing division into anterior and posterior portions; posterior lobes asymmetrical, leff largest; terminal margins very oblique, each with well-developed spines; posterolateral margins eacli with calcified plate.

Remargs

In having eleven pairs of quadriserial gills, Jacrunsia demonstrates the plesiomorphic lamellar condition (cf. de Saint Laurent-Dechancé 1966b) that is also seen in Iridopagurus de Saint Laurcht-Dechancé 1966, and Turleania Mclaughlin. 1997. Males of all three genera have a well-developed left sexual tubs; however, while the tube terminates with a spare ult of setae in Turlania, in the presently monorypic facquesia, the tip is practically obscured hy ufts of long dense setae. Athough all thrce genera also lack an accessory tooth on the crista dentata of the third maxilliped, it is wioh hidopatgurus that haguasia appears to have the chosest phylogeneric relarionship. Species of both genera have moderately shors acular peduncles wilh somewhat dilated corneas; the ocular acides are narrowly triangular. The antemnular peduncles (Fig. IA) commonty are provided with a distat row of long setae on the ultimate segment, as well as a prominent lateral spine on the statocyst lobe of the basal segment. In the structure of the mouthparts (lig- IB-F), the external endopodal lobe of the maxillule is more strongly developed in Incquesia than in Jredopugurns, as illustrated by de Saint Laurent-Dechancé (1966,1) for Dridopagherws iris (A. Mithe Edwards, 1880), but the basally swollen and distally rod-slaped exopod of the first maxilliped is virnaally identical in the two genera. Species of bort genera also have a very prominent meral spine on the third maxilliped. Similarities are found as well in the shapes and
armature of the chelipeds and ambulatory legs in species of both；however，only in Jacquesia are females provided with paired first pleopods．

Jacquesia polymorpha n．sp．
 （Figs 1－4）

Type material．－Hulotype： $3,5.0$ mm（MNHN Pg 5655），Vanuatu，Musortom 8，stn CP 1084, $15^{\circ} 50^{\prime} \mathrm{S}, 167^{\circ} 17^{\prime} \mathrm{E} .207-280 \mathrm{~m}$.
Pararypes： 1 \＆ $3.4 \mathrm{~mm}, 1$ ovigerous $9,4.7 \mathrm{~mm}$ （USNM 261450）Chesterfield Islands，Musorstom 5, stn CP $311,22^{\circ} 14^{\prime} \mathrm{S}, 159^{\circ} 23.9^{\circ} \mathrm{E}, 320 \mathrm{~m}$ ．
-1 6，4．9 mm（MNHN Pg 5656），Chesterfield Islands，Chalcal 1，str DC 68，22＂3i．2＇S， $159^{\circ} 15.5^{\prime} \mathrm{E}$ ， 296 m ．
$-18.2 .6 \mathrm{~mm}, 1$ P， $3.6 \mathrm{~mm}(\mathrm{~N} 11 \mathrm{M})$ ，Chesterfield Islands，Musorstom 5，stn DW 255， $25^{\circ} 15.4^{\prime} \mathrm{S}$ ， $159^{\circ} 54.8 \mathrm{E}, 280-295 \mathrm{~m}$,
-360 ， $3.4-4,2 \mathrm{~mm}, 3$ 우， $2.0-3.7 \mathrm{~mm}, 1$ ovige－ rous 9.3 .5 mm （ MNHNPP 5656 ），New Caledonia， Smib 5，sth DW 88， $22^{\circ} 186^{\circ} \mathrm{S}, 168^{\circ} 40,2^{\circ} \mathrm{E}, 35 \mathrm{~m}$ ．

Etymology．－From the Latin polus，meaning much or many，and morphe，meaning form or shape and referring to the great morphological variability seen in this species．

Matertal examined．－Philippinc Islands． Musorsroni 2．sth 54，27．XI＿1980，13059．5＇N $120^{\circ} 09.3 \mathrm{E}^{\circ}$ ．170－174 m， 1 ó， 4.2 mm （MNHN $\operatorname{Pg} 5652),-\operatorname{Sin} 57,28 \times 1,1980,18^{\circ} 51.9{ }^{\prime} \mathrm{N}$, $120^{\circ} 03.71 \mathrm{E}, 132-156 \mathrm{~m}, 2$ o ${ }^{\circ}, 3.7 \mathrm{~mm}, 4.2 \mathrm{~mm}$ （MNHN P95654）．－Sm6 61．29．X1．1980，1400 ${ }^{\circ} \mathrm{N}$, $120^{\circ} 16.4^{\prime} \mathrm{E}, 1$ ovigerous 9.4 .5 mm （MNHN Pg 5653）．
New Caledonia，Norfolk and Loyalty Ridges． Musorstom 4，stu DW 184，18．1X．1985，19004＇S． $163^{\circ} 27.5^{\prime} \mathrm{E}, 260 \mathrm{~m}, 3$ oे के，2．6－3．7 mm， 3 ovigerous $9.4 .3-4.8 \mathrm{~mm}$（MNHN Pg 5675）．
Musorston 6，stn DW 479，22．11．1989，21＂09．1 ${ }^{\circ}$ S， $167^{\circ} 54,95^{\circ} \mathrm{L}, 310 \mathrm{~m}, 1$ द， 2.9 mm （MNHN Pg 5681）．
Northwest Iagoon，stm 1051，4．V．1988，20 $0^{\circ} 11.8^{\prime} \mathrm{S}$ ． $164^{\circ} 10.5^{\circ} \mathrm{E}, 11.12 \mathrm{~m}, 1$ 오， 3.3 mm （MNHN Pg 5658）．
Chatcal 2，stn DW 69，27．X．1986，2444＇S， $168^{\circ} 08^{\prime} \mathrm{E}, 260 \mathrm{~m}, 1$ 古， 2.2 mm （MNHN Pg 5661 ）． Smib 3，stu DW 18，23．V． $1487.23^{\circ} 42^{\prime} \mathrm{S}, 167^{\circ} 599^{\circ} \mathrm{E}$ ， $338 \mathrm{~m}, 2$ © d d． $2.5 \mathrm{~mm}, 4.5 \mathrm{~mm}$（MNIIN Pg 5662）． Smib 4，stn DW 42，8．111．1989，24＇45．7＇S， $168^{\circ} 08.4^{\circ} \mathrm{E} .320 \mathrm{~m}, 1$ B． 2.6 mm （MNHN $\operatorname{Pg} 5663$ ）．－ Sin DW 44，8．111．198リ， $24^{\circ} 46^{\circ} \mathrm{S}$ ． $168^{\circ} 08.2^{\circ} \mathrm{E} .300 \mathrm{~m}, 2$ が ${ }^{2}, 2.2-4,6 \mathrm{~mm}$（MNHN Pg 5664）．－Sm DW 46，8．111．1989， $24^{\circ} 46.7^{\prime} \mathrm{S}$ ， $168^{\circ} 08.5^{\prime} \mathrm{E}, 260 \mathrm{~m}, 1 \delta^{\circ}, 3.4 \mathrm{~mm}, 1$ ovigerous ${ }^{\circ}+$ 2.9 mm （MNHN Pg 5665）．

Smib 5．stn DW 87．11．IX．1989．22＂18．7’S． $168^{\circ} 41.3^{\circ} \mathrm{E}, 370 \mathrm{~m}, 16.2 .3 \mathrm{~mm}$（MiNHN Pg 5666）．－Sm DW 88，11．XI．1989，22018．6＇S， $168^{\circ} 40.2^{\circ} \mathrm{E}, 350 \mathrm{~m}, 3$ ठ̊ む， $3.4-4.2 \mathrm{~mm}, 3$ 오， $2.0-$ 3.7 mm ，I ovigerous 9.3 .5 mm （paratypes）（MNHN Py 5657）．
Smil 8．stn DW 155，28．1．1993， $24^{\circ} 45^{\circ} \mathrm{S}$ ． $168^{\circ} 08^{\prime} \mathrm{E}$ ， 257－2（12 m， 1 uvigerous i， 2.7 mm （MNHN l＇g 5467 ）－－Stn DW $157,28.1,1943,24^{\prime \prime} 46^{\prime} S$ ， $168^{\circ} 08^{\circ} \mathrm{E}, 251-255 \mathrm{~mm}, 13,4.7 \mathrm{~mm}, 1$ ， 3.0 mm （NNHN PG5668）－S Sin DW 158，28．I．1993， 24＂46＇S，162002E，262－290 m， 1 \％， 2.6 mm （MNHN Pg 56619）．－Sm DW 165，28．1．1993， $24^{\circ} .48^{\prime} \mathrm{S}, 168^{\prime \prime} 10^{\prime} \mathrm{F}, 372-660 \mathrm{~m}, 18,4.7 \mathrm{~mm}$ （MNHN Pg 5670）．－Sm DW 175，29．1．1993， $23^{\circ} 4 \mathrm{~J}^{\prime} \mathrm{S}, 168^{\circ} 00^{\prime} \mathrm{L}, 235-240 \mathrm{~m}, 16.3 .7 \mathrm{~mm}$ （MNHN Pg 5671）．－Sin［DW 182．31．1．1993， $23^{\circ} 18^{\circ} 5,168^{\circ} 05^{\prime} \mathrm{E}, 314-310 \mathrm{~mm}, 1$ avigerous ${ }^{\circ}$ ， 5.7 mm （ MNHNPE 5672 ）．

Smib 10，sta DW 20），10．1．1ツウร， $24^{\circ} 49^{\circ} \mathrm{S}, 168^{\circ} 09^{\circ} \mathrm{E}$ ， $329-560 \mathrm{~mm}, 18,3.6 \mathrm{~mm}, 1$ ovigerous $9,6.6 \mathrm{~mm}$ （MNHN Pg 5673）．－Sm DW 210．10．J．1995， $24^{\circ} 49^{\circ} 5,168^{\circ} 09^{\circ} \mathrm{E}, 308-510 \mathrm{~m}, 1$ o， 3.2 mm （MNHN Pg 5674 ）．
Volsmar，sth DW 40，8．VI，1989，22020＇S． $168^{4} 42.2 \mathrm{~L} .295 \mathrm{~m}, 18.4 .9 \mathrm{~mm}, 1$ 우， 2.6 mm （MNHN Pg 5682）．
13cry：11，stn DW 18，16．X．1992，24＂47．90＇S，
 （NNHN Ps 5687）．
Barlus d，arn DW 924．7．VIII．1994． $18^{\circ} 54^{\prime} \mathrm{S}$ ， $16.3^{\prime 2} 24^{\prime} 1.344 .360 \mathrm{~m}, 1$ ovigerous $9,3.6 \mathrm{~mm}$ （MNHIN PH 5688）．－Sun DW 936．8．VIII．1994． 19 ＂03＂s， $163^{\prime 2} 28^{2} \mathrm{E}, 258-252 \mathrm{~m}, 19,4.0 \mathrm{~mm}$ （MNIIN Pg 5689）．－Sin CP 939．8．VTII．94， $18^{n 5} 58^{\prime 5}, 163^{\prime 2} 25^{\circ} \mathrm{E}, 304-320 \mathrm{~m}, 1$ 军， 4.0 mm （ANNIN Pr 5690），－SmDW 9M0，8．VIIL＋1994，
 $2.0 \mathrm{~mm}, 1$ ovigerous 9.3 .3 mm （ANHN Pg 5691）．－SmDW 442，8．V111．1994， $19^{\circ}\left(04^{\prime} \mathrm{S}\right.$ ， $163^{\circ} 27^{\prime}$ Fi， $270-264 \mathrm{~m}, 2$ ． $65^{\circ}, 3.7 .4 .1 \mathrm{~mm}, 1$ ovige－ rous 是． 1.3 mm （MNHN［＇g $50^{\prime} 22$ ）．
Halical 1，sm［nW 104，28．久1．1994， $18^{\circ} 55^{\circ} \mathrm{S}$ ， $16324 \mathrm{~F}, 350.365 \mathrm{~m}, 1$ neigeroun -3.6 mm （MNIN゚Pg 5633 ）．
Chesterfield Islands and Lord Howe Ridge． Chital 1，sum CP17．July 1984，28＂34．7＇S， 1 ジ 15.3 ＇F， $295 \mathrm{~m}, 1$ お， 3.7 mm （MNHN Pg 565\％）－Sm DC61，26．V11．1984，21042．4＇S． $159^{\circ} 29^{\prime} \mathrm{E}, 50 \mathrm{~m}, 1 \delta, 3.6 \mathrm{~mm}, 2$ ？ $9,2.6,3.9 \mathrm{~mm}$ （MNHN Pg 5660）．－Sm DC 68，27．V11．1984． $22^{\circ} 34.2^{\prime} \mathrm{S}, 159^{\circ} 15.5^{\prime} \mathrm{E}, 296 \mathrm{~m}, 1$ d．， 4.9 mm （paraty－ PC）（ANHN P咢5656）．
Musorstom 5，4s，DW 255．7．X．1986，25＂15．4＇S， $159.54 .8{ }^{3} \mathrm{E}, 280-245 \mathrm{~m}, 18,2.6 \mathrm{~mm}, 1$ ？ 3.6 mm （pararypes）（NHM 5676）．－Stn CP 311 ， 12．X．1986，22＂14＇S，159．23．9＇E．， $320 \mathrm{~m}, 1$ ठ， $3.4 \mathrm{~mm}, 1$ ovigerous $9,4.7 \mathrm{~mm}$（paratypes）（USNM 261450）．－Sin CP 312，12．X．1986， $22^{\circ} 17.2^{\prime} \mathrm{S}$ ，
159.24.8.E, $315-320 \mathrm{~m}, 2$ of b', 3.1, $3.2 \mathrm{~mm}, 2$ 오, $1.2,2.8 \mathrm{~mm}, 2$ avigerous 우 ㅇ, 3.7 .3 .8 mm (MNHN Pg 5677). - Stn CP 318, 13.X.1986. 22026.5'S, $159.21 .4 \mathrm{E}, 330 \mathrm{~m}, 10,3.4 \mathrm{~mm}$, (MNHN Pg 5678. - Sin DW 361, 19. X.1986. 19052.55, $158.38 .1 \mathrm{~L}, 400 \mathrm{~m} .1$ d. 2.2 mm (MNHN Pg 5679). - Sin [DW 378. 20. X. 1986. 19"53.7'S,
 Vanuatu Archipelago. Musorsiom 8 , sin DDW 963, 21.IX.1994, $\left.20^{\prime 2} 200^{\circ} \mathrm{S}, 169^{\prime \prime} 4\right)^{\prime} \mathrm{E}, 400-440 \mathrm{~m}, 1$ ovige-
 Son DW 964, $21 . J \mathrm{X} .1944,20^{\circ} 19 \mathrm{~S}, 169^{\circ} 49^{\circ} \mathrm{E}, 360-$ $408 \mathrm{~m}, 1$ ovideruas o 0.3 .5 mon (MNHN Pg 5685). - Sit DW 1070, 4, X. 1994, $15^{\circ} 36$ 'S.
 Pg 5686). - Sm CP 1084. 5.X.1994, 15"50'S. $167^{\circ} 17^{\prime} \mathrm{E}, 207-280 \mathrm{~m} .1 \mathrm{o}^{2}$ (holotype), 5.0 mm (MNHN Pg 5655).
Kermadec 1slands, New Zeałand. Stn K 857. 30.VII.1974, $30^{\circ} 33.8^{\prime} \mathrm{S}$, $17830.6^{\prime} \mathrm{W}$, $165-180 \mathrm{~m}$, $18,3.9 \mathrm{~mm}$ (NZOI). - Stn BS 571, 16.[X.1975, $29^{\circ} 18.99^{5}, 17^{\circ} 54.2^{\circ} \mathrm{W}, 274-210 \mathrm{~m}, 1 \mathrm{~d}, 4.4 \mathrm{~mm}$. 1 O. 4.6 mm (NAIN\%).

Distribution. - Philippine Islands: mortheses of Mindoro, New Caledonia, Norfolk and Loyalty Ridges, Chesterfield Islands, Vanuatu archipelago, Kermadec 1slands. Mose commonly beween 150 and 400 m , hut repurted from 11 l 6660 m (see "Remarks").

Habitat. - Found occupying gastropod shells.

Diagnosis

Shield usually as broad or broader than long, occasionally slightly longer than broad. Rostrum usually produced but not raching heyond level of lateral projections; broadly rounded, occasionally nearly obsolete. Ocular peduncles 0.65 to nearly entire length of shield; corneas slightly dilated; ocular acieles each with prominent submarginal spine. Antennular peduncles overreaching distal margins of comea by half or more than half length of ultimate segment; ultimate segment ustally with row of long setae adjacent to dorsodistal margin and longitudinal row of long setac on dorsolateral surface. Antennal peduncles overreaching distal margins of comeas by up to half length of ultimate segment. Antennal acicles reaching 10 or beyond distal margins of corneas.
Chelipeds both with dense covering of long and frequently also short setae on chelae and carpi, at least partially concealing armature. Right cheliped
with dactyl and fixcd finger frequently roundly or acutely triangular in dorsal view. Palm with single or double row of short to long, slender to moderatcly stout spines of both dorsomesial and dorsolateral margins, dorsal surface wirh several irregular longindinal rows of small spines or spinulcs, extending onto dorsolateral surfice of lixed linger. Carpus with spincs on dorsomesial and dorsolatcral margins; lateral face frequently with few small spines, particularly in ventral half. Merus with rwo to five acute spines on ventrolateral distal margin; blunt or subacute promberance ar ventromesial angle: ventral surface offen with few small spines or spinules. Lefr cheliped often equalling, sometimes exceeding, right in lengrh but less robust: chela often narrowly to roundly triangular in dorsal view. Palm with row of slender, short to quite long spines on both dorsomesial and dorsolateral margins, dorsal surface with numerous irregular langirudinal rows of small spines and spinules extending at least onto proximal laalf of fixed finger. Carpus suburiangular; dorsomesial margin with row of moderate to long acute spines usually second shot row of smaller spimes on sloping dorsolateral face; somewhat rounded ventrolateral margin with irregular single or double row of spines, lateral face frequently with several smaller spines on ventral half. Merus with one spine on dorsodistal margin; ventrolateral margin with two to five acute spines. on distal half, ventromesial margin with one to three subacute spines near distal angle.
Ambularory legs similarly armed from left to right, but segments proportionally dissimilar. Dorsal margins of dactyls each with row of long bristle-like setae, mesial faces with covering of long stiff secac and dorsally accompanicd by row of pinnate, spiniform setac in proximal half, mesial faces ventrally and/or ventromesial margins each with seven to ten shorter spiniform setae. Carpi each with row of five to covelve spines dorsal surface, spines of third pereopods usually smaller and semetimes fewer in number. Meri of seconsl pereopods each with rwo to live small spines or spinules in distal half" of ventral margins; third unarmed.
Coxae of left fifth pereopods in males with thick, short to moderately long, setose sexual tube

Fig. 1, - Jacquesia polymorpha n.sp., holotype $\sigma, 5.0 \mathrm{~mm}$ (MNHN Pg 5655); A. shield and cephalic appendages; B, dactyl of right second pereopod (mesial view); C, anterior lobe of fifth thoracic somite (between Mxp3); D, coxae and sternite of last thoracic somite; E, telson. Scale bars: 1.0 mm .
directed posteriorly toward exterior. Telson with one to three prominent, curved or hooked spines on each outer angle; terminal margins oblique, each with row of smaller acute spines.

Descrirtion

Shield (Fig. 1A) as broad to 1.2 broader than long, occasionally slightly longer than broad; anterior margin berween rostrum and lateral pro-
jections concave; anterolateral margins sloping, slightly terraced or weakly concave; posterior margin truncatc; dorsal surface with few tufts of setae anteriorly and laterally. Rostrum usually produced bur not reaching beyond level of lateral projections; broadly rounded, nceasionally nearly obsolete. Lateral projections well-developed, subacutely or acurely triangular, usually with marginal or submarginal spine, sometimes only corneous-tipped spinule.

FIG. 2. - Jacquesia polymorpha n.sp., of paratype, $4.9 \mathrm{~mm}(\mathrm{MNHN} \operatorname{Pg} 5656)$: A. gill lamella from distal portion of arthrobranch of seventh thoracic somite; \mathbf{B}, left antennule (dorsal view, aesthetasks omitted); C, left maxillule (external view); D, left maxilla (external view); \mathbf{E}, left first maxilliped (external view); \mathbf{F}, left second maxilliped (external view); G, left third maxilliped (external view). Scale bars: A, $0.5 \mathrm{~mm} ; \mathrm{B}-\mathrm{G}, 1.0 \mathrm{~mm}$

Ocular peduncles (including corneas) approximately 0.65-0.95 shield length; moderately slender basally, broadened at bases of slightly dilated corneas; corneal diameter 0.38-0.57 length of peduncle. Ocular acicles narrowly and acutely rriangular, with very prominent submarginal spine. Acicles widely separated by prominent, slightly concave interocular lobe.

Antennular peduncles (Figs 1A, 2B) when fully extended, overreaching distal margins of comeas by 0.50-0.90 length of whimate segment. Ultimate segment ustally with row of long setae adjacent to dorsodistal matgin and longitudinal row of long setae on dorsolateral surface. Penultimate segment with few short setae. Basal segment with statocyst region expanded laterally and dorsoventrally flatened, with acue spine on dorsolateral margin. Antennal peduncles (Fig. 1A) overreaching distal margins of corneas by $0.25-0.50$ lengith of whim-ate segmen. lifih and fourth segments with numerous long serae dorsally and ventrally. Third segment unamed. Second segment with latero-dintal projection reaching from 0.25 of fourth peduncular segment to nearly distal margin, terminating in ache simple or bifid spine; dorso-mesial distal angle with prominent acute spine. First segment with usually small, sometimes prominena, simple or bifid spine dorsodistally above antental gland orifice. Antennal acicle teaching nearly to distal margins or often reaching considerably beyond distal margins of corneas; terminating in acute spine and with long setae on mesial margin. Antennal Alagella overreaching outsiretched chelipeds, with one or two (one to two article lengit) every other article and one or moo long (four ro five article length) every eight to twenty-five articles.

Right cheliped (Fig. 1A) with chela varying from moderately long and stout to long and moderately slender (Tables 1, 2); dactyl and fixed finger often roundly or acutely triangular in dorsal view. Dactyl 0.65-1.5 length of palm, usually overlapped by fixed finger; cutting edge with one or two low broad calcareous teeth in proximal half, few very small calcareous teeth, sometimes nearly fused, distally; terminating in small corneous claw; dorsomesial margin with single or
double row of short to long, conical acure or subacute spines, dorsal surface flattened or slightly convex, with long setae obscuring one to three irregular rows of small spines or spinules at least in proximal halfi venural and mesial surfaces also with tutts of long setac. Palm 0.75 to equal length of carpus; dorsomestal margin with single or irregularly double row of short to long, slender to moderately stout, ofien conical spines; dorsal surlace flatened to slighely convex, with several irregular longitudinal rows of small spines and spinules, extending tonto dorsolateral surface of fixed finger, dorsolateral margin with single or nearly double row of moderately strong conical spines, at least on distal portion of palm and decreasing in size coward tip of fised finger; armature partially to entirely obscured by short and long simple setae: mesial, lateral and ventral surfaces all with numerous short transverse rows of longe setae; dorsal surface of fixed finger also with numeroms long setac; cutting edge vith one or two large rather blunt and few to several small calcareous reeth, terminating in small corneous or calcarcous clavv. Carpus equal to or slightly longer than merns: dorsomesial margin with row of acute spines at least in distal half, strongest at dorsudistal angle, dorsal surface with scattered long setac, dorsolateral margin with single or irregular donble row of spines, mesial and ventral surfaces with short rransverse rows of long setae; lateral face frequently with few small spines dorsally ar least partially obscured by long setae, ventrolateral margin with preminent spine distally. Merus with numerous long setae on dursal margin and mesial and lateral faces: ventrolateral distal margin with two to five acute spines; blunt or subacute protuberance at veneromesial angle; ventral surface often with few small spines or spimiles. Ischium with seate mesially and ventrally.

Left cheliped (Fig. 3B-D) often equaling, sometimes excecding, right in Iength hut less robust; chela often narrowly to roundly triangular in dorsal view. Dactyl 0.85-1.2 tength of palm; cutring edge with row of very small comeous teeth, terminating in corneous claw; dorsal surface flattened or weakly convex, with one to three longitudinal rows of small to moderately large spines in proximal $0.35-0.75$, partially to entirely

Fig. 3. - Jacquesia polymorpina, n.sp., A, B, E, F; holotype 5.0 mm (MNHN Pg 5655); C, ơ paratype, 4.9 mm (MNHN Pg 5656); D. $\delta, 3.7 \mathrm{~mm}$ (MNHN Pg 5668); A, carpus and chela of right cheliped (dorsal view, setae omitted); B-D, same of left cheliped; E, right second pereopod; F, left third pereopod (lateral view, setae amitted). Scale bars: 2 mm .
obscured by long setae; dorsomesial margin with row of short to modetately long spines decreasing in size distally and extending nearly to tip of fixed finger; mesial and ventral surfaces with
tufts of long setae. Palm 0.65-0.80 length of carpus: dorsomesial and dorsolateral margins each with row of slender, short to quite long spines, dorsal surface flattened or with slightly elevated
rounded median platealu, surface with numerous irregular longitudinal rows of small spines and spinules extending al least onto proximal half of fixed finger, all partially to completely obscured by shorr and/or long setae; cutring edge of fixed finger with row of small calcareous teeth interspersed with small corneous teeth, terminating in small comeous claw; mesial, lateral and ventral surfaces also with numerous long setae, Carpus subtriangular, approximately as long to 0.35 longer than merus; dorsomestal margin with row of moderate to long acute spines at least in distal 0.65 , usually second short row of smaller spines on sloping dorsolateral face, occasionally on one
or two very small spitules; all partially obscured by long setae; mesial, lateral and ventral faces each with short transverse rows of long setae; somewhat rounded ventrolateral margin with irregular single or double row of spines, distalmost often extremely prominetic, lateral face frequently with several smaller spines in ventral half. Merus with long setae on dorsal, lateral and ventral surfaces; dorsodistal margin with one spine; ventrolateral margin with two to five acure spines in distal half, ventromesial margin with one to three subacure spines near disral angle; ventral surface often with one to several small spines distally. Ischium with long setae on ventral margin.

Fig. 4 - Jacquesia polymorpha n.sp., A. B, holotype, 5.0 mm (MNHN Pg 5655); C, F. f paratype, 4.9 mm (MNHN Pg 5656); D, G, o, $4.7 \mathrm{~mm} ; \mathrm{E}, \mathrm{H}, \delta, 3.7 \mathrm{~mm}$ (MNHN Pg 5675); A, dactyl and propodus of right fourth pereopod (lateral view); B, dactyl and propodus of right fifth pereopod (lateral view); C-E, sternite and coxae of last (eighth) thoracic sternite, showing left sexual tube and right gonopore (ventral view); F.H, telson. Scale bars: 1.0 mm .

Ambulatory legs (Figs 2B, 3E, F) similarly armed from left to right, but proportionally dissimilar. Dactyls of second right 1.0-1.4, third left 1.4-2.2 length of propodi; in dorsal view, straight; in lateral view, often somewhat curved ventrally; terminating in slender corneous claws; dorsal margins each with row of long bristle-like setae, mesial faces with covering of long stiff setae and dorsally accompanied by row of pinnate, spiniform setac in proximal half, mesial faces ventrally and/or ventromesial matgins cach with seven to ten shorter spiniform setac. D'ropodi of right second 1.4-2.2, propodi of third left 1.0-1.6 length of carpi; with long sctac dorsally, arising from low protuberances, few seattered setac ventrally, ventrodistal margin with one or two spiniform sctac mesially. Carpi each with row of five to twelve spines dorsal surface, but without spine at dorsodistal angle, spines of third pereopods usually smaller and sometimes fewer in number. Meri of second right pereopods longer and more slender than meri of third leff; all with low protuberances and rufts of moderately long setae on dorsal margins; ventral margins of second pereopods each with two to five sinall spmes or spimules in distal half; third marmed. Ischia unarmed.
Sternite of third pereopods with small, subovate. roundly triangular, or subquadrate anterior lobe (Fig. 3C), un-armed or with one or two terminal spinules partially obscured by long setae. Fourth pereopods subchelate or very weakly semichelate. Coxae of fifth pereopods in males asymmetrical; left (Figs 2C-E, 3D) with thick, short to moderately long setose sexual rube directed posteriorly roward exterior.

Telson (Figs 1E, 4F-H) with posterior lobes slightly to moderately asymmetrical, each outer angle with one to three prominent, curved or hooked spines; terminal margins oblique, each with row of smaller acute spines.

Colour (in preservative)

Shield with splotches of orange, largest near posterior margin laterally. Ocular peduncles uniformly orange. Second segments of antennal peduncles opaque with orange distally. Chelipeds whitish, with orange band at mid-length of both
dactyls and fixed fingers; palms orange on mesial faces at dorsodistal angles and in longitudinal streak on dorsal midline; carpi each with patch of otange distomesially and distolaterally, and one large orange spot proximally on mesial and lateral face; meri each with patch of orange on mesial and lateral faces at distal margins and one large orange spot on lateral face proximally.
Ambulatory legs whitish, each with three orange bands on dactyls, one distally, one in proximal half and one at proximal margin: propodi each with orange band at mid-lengrh and orange spor on lateral facc proximally; carpi cach with parch of orange on distal margin mesially and laremally, patch of orange dorsally at mid-length on mesial face and spor in proximal half of lateral face ventrally: meri each with orange patch dorsodistally, two widely-separated orange spots on lateral face and additional orange spot on mesial faces of second pereopods. Ischia of thived pereopods each with diffuse patch of orange laterally.

Reproduction

Females were ovigerous at shield lengths of 2.76.6 mm , and all carried numerous small eggs. The reproductive season appears to be quite prolonged, with egg-bearing females collected from August to March. Eggs were all in relatively early stages of development at the time of capture, with non-eyed eggs measuring from 0.62 to 0.82 mm in diameter.

Remarks

As its name implics, Jacquesia polymorpha is morphologically highly variable. Thesc variations are most striking in the length of the male sexual tube and the shape of the lefi chela (Fig. 3B-D). The ten malcs from Vanuatu and the Chesterfield Islands had shore sexual tubes (Figs 1D, 4C) and despite a size range of 2.6 to 5.0 mm (shield lengrth), the sexual tube remained short, not reaching much if any beyond the coxal margin. These short sexual tubes appeared to arise more anteriorly on the coxa than the longer tubes, and as previously indicared, were pressed closely against the coxal surface. Among the thiry-four males with long sexual rubes, all from Now Caledonia proper and the Kermadec Islands, shield lengths ranged from 2.0 to

TABLE 1. - Chelae width/length ratio in samples of Jacquesia polymorpha $n . s p$. with short male sexual tube (given as percent maximum width to length). a. m., appendage missing.

Locality	Cruise/Station	Depth (m)	s.l. (mm)	Right chela		Left chela	
Chesterfield	Mus. 5, CP 312	315-320	1.8	-	46	-	42
Chesterfield	Mus. 5, CP 312	315-320	2.8	-	42	-	38
Chesterfield	Mus. 5, CP 312	315-320	3.1	a. m.	-	40	-
Chesterfield	Mus. 5, CP 312	315-320	3.3	46	-	38	-
Vanuatu	Mus. 8, DW 1070	184-190	3.4	-	a. m.	-	38
Chesterfleld	Mus. 5, CP 371	311	3.4	43	-	38	-
Chesterfield	Mus. 5, CP 318	330	3.5	43	-	39	-
Chesterfield	Chalcal 1. DC 61	250	3.6	42	-	32	-
Chesterfield	Chalcal 1, CP 17	295	3.7	40	-	39	-
Chesterfield	Mus. 5, CP 312	315-320	3.7	44	-	-	46
Chesterfield	Mus. 5, CP 312	315-320	3.8	-	43	-	42
Vanuatu	Mus, 8. DW 964	360-40	3.9	-	46	-	40
Chesterfield	Chalcal 1, DC 61	250	3.9	-	45	-	42
Chesterfield	Mus. B, OW 963	400-440	4.0	-	44	-	46
Vanuatu	Mus. 5. CP 311	320	4.7	-	48	-	46
Chesterfield	Chalcal 1, DC 68	296	4.9	50	-	43	-
Vanuatu	Mus. B, CP 1084	207-280	5.0	42	-	39	-
Average				43.7	48.7	38.5	42.2

Table 2. - Same data as Table 1 in samples of Jacquesia polymorpha n.sp, with long male sexual tube.

Locality	Cruise/Station	Depth (m)	s.l. (mm)	Right chela		Left chela d \quad ?	
Chesterfield	Mus. 5, DW 361	400	2.2	47	-	50	-
N. Caledonia	Chalcal 2, DW 69	260	2.2	a. m.	-	40	-
N. Caledonia	Smib 4, DW 44	300	2.2	48	-	54	-
N. Caledonia	Smib 5, DW 87	370	2.3	44	-	51	-
N. Caledonia	Volsmar, DW 40	295	2.6	-	47	-	45
N. Caledonia	Mus. 4, DW 184	260	2.6	45	-	50	-
N. Caledonia	Smib 4, DW 46	260	2.9	-	48	-	49
N. Caledonia	Smib 5, DW E8	350	3.3	a. m.	-	56	-
N. Caledonia	Smib 5, DW 88	350	3.4	69	-	49	-
N. Caledonia	Smib 5, DW 88	350	3.5	-	50	-	54
N. Caledonia	Smib 4, DW 46	260	3.5	52	-	48	-
Chesterfield	Mus. 5, DW 378	355	3.6	43	-	47	-
N. Caledonia	Smib 5, DW 88	350	3.7	-	53	-	42
N. Caledonia	Mus. 4, DW 184	260	3.7	50	5	47	
N. Caledonia	Mus. 4. DW 184	260	3.7	44	-	41	-
N. Caledonia	Smit 5, DW 88	350	4.2	46	-	49	-
N. Caledonia	Mus. 4, DW 184	260	4.5	64	-		-
N. Caledonia	Beryx 11, DW 18	250-270	4.5	55	-	50	-
N. Caledonia	Smib 4, DW 44	300	4.6	47	-	39	-
N. Caledonia	Smib 8, DW 165	372-660	4.7	42	-	41	-
N. Caledonia	Mus. 4, DW 184	260	4.8	a. m.	-	53	-
N. Caledonia	Volsmar, DW 40	295	4.9	50	-	46	-
Average				48.7	49.5	48.7	47.5

4.9 mm , and in all individuats the tube extended well beyond the distal coxal margin (Fig. 4D, E). The dorsal surfaces of the chelae are covered by long setae accompanied by dense shorr setae, both of which almose enrirely obscured the surface armarure The left chela is relarively broad, roundly triangulat in males of the first group. In the second group the setal covering of the chelae consisted principally of dense long serale; and the left chela was relarively narrow and triangular.
In both groups of males, the righr gonopore is quite small, developed near the anteromesial margin of the cosa, and it is ar least partially concealed by the surrounding setae.
As with chela shape, there was some variation in the occurrence of short setac. All specimens had an abundant coveriug of long setac, both marginally and on the surfaces; however, most frequently, but not exclusively, the broader the chela, the more conmon the presence of short setae as well.
Armature of the chelipeds and ambulatory legs similarly showed considerable variation, chat did not appear correlated either with sex or size. While spines on the margins of borh palms were often relarively short (Fig. 3A, B, D). they also could be exrremely elongate, slender and curved (Fig. 3C). Armanure of the carpi of the left chelipeds was even more variable. A row of spines of moderate to appreciable size was always present on the dorsomesial margin, bur whike usually extending well onto the proximal half, the spine row sometimes would nor reach beyond midlength. Spines on the sloping dorsolateral margin in some specimens formed a well defined row, but in others were replaced by only one or rwo spimules. Similarly the lateral lises of these carpi were marmed in some specimens, had only a ventral marginal tow of spines or could be strongly spinose over the entire ventral half of the surface. Spines on the carpi varied both in number and in strength on both the second and third percopods.
The four specimens from the Philippines differed from all of the others in lacking the distinct row of long setae on the distal margin of the ultimare segment of the anrennular peduncle. It did not appear that the setae had been lost during capture or as a result of preservation, as no row of setal
pores could be detecred under high magnification with light microscopy. 'There also appeared to be a slight difference in the density of the terminal setation of the male sexual tube; its length was generally intermediate benween the long or shore culves observed in the other males. It is possible that these differences are indicative of a disrincr Philippine subspecies; however, in view of the wide ranges of variation ohserved in orher characters of J. polynomphat n.sp., we do not feel it prudent to propose a separate taxon for the Philippines specimens on the basis of four individuals.

DISCUSSION

We initially were of the opinion that two very similar species were represented in the collecion. The first could be characterized in having short sexual tube that was not produced much beyond the distal margin of the coxa and was very closely applied against the coxa, giving the impression of partial fusion. Additionally, the setal covering of the chelat in this group consisted principally of dense long setae; the left chela was not narrow and triangular. The males of the second group each had a relatively long male sexual tube that exrended well beyond the distal margin of the cosa. chelae wirh the dorsal surfaces covered by long setac accompanied by dense short serae, both of which almose entirely obscured the surface armature, and a relatively broad, roundly iriangular left chela.
To test our hypothesis, we examined not only the lengelt/widda ration of the left chela in the two groups, but also those of the righr, and four other structures that are commonly conservarive in pagurid species, looking for both inrer-group differences and possible sexnal dimorphism. Our sample sizes are too small for meaningfol statisticat analyses, but have provided the means for a substantive assessment.
As may he seen from Table 1 (first group), there was not an appreciable difference berween rhe average ratios of either chela in males and females. In contrast, there was a suggestion of sexual dimorphism in the second group

Tabie 3. - Shield lengthiwidth: ocular peduncle/shield length ratios; percent overreach of antennular and antennal peduncles* in samples of Jacquesia polymorpha, new species, with short male sexual tube. *, percent ultimate antennular and/or antennal peduncular overreaches ocular peduncle (measured at distal corneal margin).

Cruise/Station	sl (mm)	Shield		Ocular peduncles		A1 peduncles		A2 peduncles	
		δ	9	of	9	\%	9	\%	¢
Mus. 5 CP312	1.8	-	93	-	89	-	60	-	24
Mus. 5 CP312	2.8	-	88	-	88	-	89	-	32
Mus. 5 CP312	3.1	93	-	74	-	90	-	26	-
Mus. 5 CP312	3.3	98	-	73	-	81	-	19	-
Mus. 8 DW1070	3.4	-	100	-	66	-	76	-	29
Mus. 5 CP311	3.4	82	-	90	-	78	-	17	-
Mus. 5 CP318	3.5	90	-	72	-	70	-	19	-
Chal. 1 DW61	3.6	88	-	73	-	86	-	39	-
Chal. 1 CP17	3.7	94	-	78	-	88	-	25	-
Mus. 5 CP312	3.7	-	98	-	74	-	73	-	27
Mus 5 CP312	3.8	-	98	-	82	71	-	-	22
Mus. 8 DW964	3.9	-	100	-	92	-	88	-	33
Chateal 1 DW61	3.9	-	96	-	71	-	80	-	32
Mus.8. DW963	4.0	-	102	-	70	-	116	-	33
Mus. 5 CP311	4.7	-	88	-	70	-	60	-	33
Chatc. 1 DW68	4.9	90	-	78	-	96	-	38	-
Mus. 8 CP1084	5.0	97	-	75	-	100	-	47	-
Average		91.5	95.8	76.6	78.0	86.1	79.2	26.8	29.4

Table 4. -- Same data as Table 3 in samples of Jacquesia polymorpha, new species, with long male sexual tube.

Cruise/Station	sl (mm)	Shield		Ocular peduncles		A1 peduncles		$\begin{gathered} \mathrm{A} 2 \\ \text { peduncles } \end{gathered}$	
		σ	\%	0^{2}	9	δ	9	δ	O
Mus. 5 DW361	2.2	92	-	92	-	53	-	15	-
Chal. 2 DW69	2.2	97	-	94	-	56	-	19	-
Smib 4 DW44	2.2	97	-	82	-	79	-	26	-
Smib 4 DW87	2.3	97	-	92	-	56	-	30	-
Volsm. DW40	2.6	-	100		80	-	82	-	29
Mus 4 DW184	2.6	83	-	91	-	94	-	38	-
Smib 4 DW4G	2.9	-	85	-	85	-	80	26	-
Smib 5 DW88	3.3	96	-	71	-	86	-	50	-
Smib 5 DW88	3.4	93	-	88	-	-	80	-	26
Smib 5 DW88	3.5	-	96	-	84	-	87	-	28
Smib 4 DW46	3.5	80	-	80	-	89	-	27	-
Mus, 5 DW378.	3.6	89	-	88	-	80	-	40	
Smib 5 DW88	3.7	-	100	-	72	-	94	-	42
Mus. 4 DW184	3.7	96	-	84	-	87	-	28	-
Mus. 4 DW184	3.7	-	93	-	68	-	62	-	42
Smin 5 DW88	4.2	101	-	84	-	81	-	24	-
Mus. 4 DW 184	4.3	87	-	91	-	90	-	32	-
Ber. 11 DW18	4.5	94	-	89	-	50	-	17	-
Mus. 4 DW184	4.5	-	93	-	64	-	91	-	44
Smib 4 DW44	4.6	97	-	87	-	85	-	24	-
Smib 8 DW165	4.7	97	-	82	-	67		40	-
Mus. 4 DW184	4.8	-	90	-	88	-	95	-	52
Votsmar DW40	4.9	101	-	82	-	75	-	20	-
Average		95.5	93.8	85.9	77.3	75.5	82.1	28.5	43.1

(Table 2); malcs of this group tended to have noticeably marrower chelae. Although an average difference can be seen between the two groups. their ranges do overlap. In the four additional characters (Tables 3, 4), the enverage ratios of shield length to width were not appreciably diffcrent between the sexes in the first group, but longer shields were more common in temales of the second group. When the ratios of shield length to ocular peduncular length were examined, the reverse was truc. Differences in the average ratios between males and females of the first group were pronounced, but only slight in the second group. In the distance that both the antennular peduncles and antennal pedunctes extended beyond the distal margins of the comeas (given as the ratio of extension to ocular peduncle length, in percent), femates of the first group averaged appreciably greater extension than did males, whereas males averaged greater antennular peduncle extension in the second group and antennal pedunculat extension was very similar between the sexes. Although averages of all ratios differed between the two groups, ranges overlapped. No definitive patterns could be detected that would support the hypothesis of two taxa represented.
We then looked at the bathymetric and geographic distributions of the two groups. As may be seen in Tables 1. 2 with only two cxceptions, all specimens of the group characterized by a broad chela and long male scxual tube came from the New Calcdonia area; spectimens of the second group all were collcoted in the Chesterfield Islands and Vanuaru. 'l'he three specimens from rhe Kermadec Islands, while not included in our morphometric examination, are assignable to the first group. No differences in bathymecric distributions have beun observed. Therfore, we have concluded that the morphological variation seen in Jacquesia polymorpha, new specics, is more probably a finction of geography and/or habitat than genetic differeucc. However, because our determination has been made on a relatively small sample, the possibility that two taxa really are involved cannor be totally ignored. For that reason, we have selected the holorype and paratypes exclusively from the group characterized by the short male sexual tube and narrow left chela.

Acknowledgements

We express our sinccre thanks to Jacques Forest, Muséum national d'Histoire naturellc, Paris, Alain Crosnier, Office national de la Recherche Scientifique et Technique Ourre Mer, Paris, and Steve O'Shea, National Instituce of Water and Atmospheric Rescarch, Wellingron, for providing much of the material upon which this study has becn based. This is a scientific contribution from the Shannon Point Marine Center, Western Washington University.

REFERENCES

Fores J. 1985. - I al II - Prilippines (1976, 1980), résultats des campagnes Musnrstom. Tome 2. Mémoires du Mhesemn mational d'listoive maturelle (A) Zoologie 133: 7-30, figs 1, 2.

McLaughlin P'A. A 1947. - Crustacea Decapoda: Hermut crabs of the family Paguridae from the KARUBAR cruise in Indonesia, in Crosnier A. \& Boucher P. (eds), Résultars des Camparges Musorstom. Volume 16. Mémoives du Muscium Matianal d'Histoirc natatelle 172: 433-572, figs 1-14.
McLaughlin P. A. \& Saine Laurnt M. de 1998. - A new genus for four species of hermir crabs herecofore assigned to the genus Pagurus Fabricius (Decapoda: Anomurn: P'oguridae). Draccedings of the Biolugical Sucitery of Washingtom $111^{\prime \prime}(1)$: 158-187, 縈 1-12.
Milne Edwards A. 1880. - Report on the results of dredgings, under the supervision of Alcxander Agassiz, in the Gulf of Mexico, and in the Caribbean Sea, 1877.78 .79 , by the United States Coast Survey stemmer "Blake", I ieut. Commander C.D. Sigsbee, U.S.N., and Commander J. R. Barilen, US.N., commanding. VIII. Érudes prélimindires sur les Crustaces. Bullerm of the Muserm of Comparative Zoology, Harmad College 8 (1): 1-68.
Richer de Forges B. 1990. - Les campaghes dexploration de la laune barhyale dans la zone Économique de la Nonvelle-Caledonic. Explorarions for bathyal fama in the New Caledonia ceonomic aone, in A. Cromier led.), Résulats des Campagnes Mlisorstom. Volume 6. Mimaires du Misetum national dhestoive nuturelle (A) 145: 9-54, ligs 1-13.

- 1993. - Les campagnes d'exploration de la fame bathyale faites depuis mai 1989 dans la zone conoomique de la Nouvelle-Calédonic. Liste de stations, in Crosnier A. (ed.), Résultats des Campagnes Musorstom. Volume 10. Mémoires du Muséum national d'Histoire naturelle 156:27-34.

Richer de Forges B. \& Chevillion C. 1996. -- Les campagnes d'échantillonnage du benthos bathyal en Nouvelle-Calédonie en 1993 et 1994 (Bathus 1 \& 4, SMIB 8 et Halipro 1), in Crosnier A. (ed.), Résultats des Campagnes Musorstom. Volume 15. Mémoires du Muséum national d'Histoire naturelle 168:35-53, figs 1-5.
Richer de Forges B., Faliex E. \& Menou J.-L. 1996. - La campagne Musorstom 8 dans l'archipel de Vanuatu. Compte rendu et liste des stations, in Crosnier A. (ed.), Résultats des Campagnes Musorstom. Volume 15. Mémoires du Muséum
national d'Histoire naturelle 168:9-32, figs 1-16.
Saint Laurent-Dechancé M. de 1966a. -Iridopagurus, genre nouveau de Paguridae (Crustacés Décapodes) des mers tropicales américaines. Bulletin du Muséum national d'Histoire naturelle, Paris, série 2, 38 (2) : 151-173, figs 1-38.
1966b. - Remarques sur la classification de la famille des Paguridae et sur la position systématique d'Iridopagurus de Saint Laurent. Diagnose d'Anapagrides gen. nov. Bulletin du Muséum national d'Histoire naturelle, Paris, série 2, 38 (3) : 257-265.

Submitted on 21 May 1998; accepted on 6 October 1998.

